Processed records of the 8 March 2010 Elazığ - Kovancilar, earthquake Earthquake Engineering Research Center Middle East Technical University

An earthquake occurred on March 8, 2010 at 02:32 (GMT) in the eastern part of Turkey. The epicenter falls in Zone 1 in the Earthquake Zones Map of Turkey. This is the most seismically hazardous zone according to the seismic classification criteria adopted for Turkey (Gülkan et al., 1993). It is located midway between the provincial capital of Elazığ and Bingöl with coordinates reported as 38.7752 N 40.0295E by the Earthquake Division of the Turkish Disaster and Emergency Management Agency (DEMA).

The area is sparsely populated, with most dwellings having one or two stories constructed from rubble masonry without timber reinforcement or less frequently, adobe, with thick walls against harsh climate conditions. The roofs of dwellings are inclined corrugated metal with uncut timber serving as the diaphragm. This type of building and its earlier versions topped with a heavy earthen roof have performed very poorly during earthquakes.

The depth and magnitude of the earthquake are reported as 5 km and ML5.8, respectively by the same agency. Other national and international seismic agencies have reported the depth, magnitude, epicentral coordinates as well as other relevant source parameters as listed in Table 1.

Currently a total of 20 three-component accelerometric data is available through the TÜBİTAK ${ }^{1}$ funded project entitled "Compilation of National Strong Ground Motion Database in Accordance with International Standards ${ }^{2}$." The data comes from the main and aftershock events. They are acquired by the data automation system established in the Earthquake Division as one of the target objectives in the above project. This first report on the earthquake presents the uniformly processed accelerometric data of these events as well as their Fourier acceleration and response spectra. This information will also be disseminated through the Web at eerc.ce.metu.edu.tr and daphne.deprem.gov.tr. The Web site also contains the raw accelerometric data for researchers who want to do their own data processing. The current document will be updated and expanded regularly and will become a full report after compiling the observations of METU field reconnaissance team that will leave for the area on March 10, 2010. The following pages illustrate the processed waveforms and the calculated spectra for currently available records. Table 2 summarizes the low-cut and high-cut filter cut-offs determined by the procedure described in Akkar and Bommer (2006). The same table also lists the suggested usable period ranges of each recording based on the empirical expressions derived in the same article. The processing and spectral calculations are done by using the USDP software that is developed within the context of the above project.

References:

Akkar, S. and Bommer J.J., 2006. "Influence of long-period filter cut-off on elastic spectral displacements," Earthquake Engineering and Structural Dynamics, 35(9), 1145-1165.

Gulkan P., Koçyiğit A., Yücemen M.S., Doyuran V. and Başöz N. (1993). "Turkish seismic zonation map prepared by the most recent earthquake data," Report No. 93-01, Earthquake Engineering Research Center, Middle East Technical University 06531, Ankara Turkey.

[^0]
Acknowledgments:

We thank to strong-motion group of DEMA for providing us the strong-motion data. We also thank to Arda Arcasoy and Kıvanç Karanis for correcting the sample spacing of acceleration time series.

Contributors:
Abdullah Sandıkkaya
Emrah Yenier
Sinan Akkar

Table 1. Important seismological features of the main and aftershock earthquakes reported by national and international seismological agencies

Agency	Date	Time $($ GMT)	Epicenter Latitude	Epicenter Longitude	Depth (km)	M_{w}	M_{b}	M_{s}	M_{L}	M_{0} (dyne.cm)
DEMA 3	$08-03-10$	$02: 32: 30$	38.7752	40.0295	5.0	-	-	-	5.8	-
KOERI 4	$08-03-10$	$02: 32: 31$	38.807	40.0998	5.0	-	-	-	6.0	-
GCMT 5	$08-03-10$	$02: 32: 39$	38.89	40.02	15.6	6.1	5.9	5.9	-	$1.55 \mathrm{E}+25$
RCMT 6	$08-03-10$	$02: 32: 40$	38.95	40.00	15.0	6.1	-	-	-	$1.60 \mathrm{E}+25$
USGS 7	$08-03-10$	$02: 32: 36$	38.888	40.022	21.0	6.0	-	-	-	$1.40 \mathrm{E}+25$

Agency	T- axes	T- axes	N- axes	N- axes	P- axes	P- axes	1st Plane	1st Plane	1st Plane	2nd Plane	2nd Plane	2nd Plane SLG	Correct Plane
	-	-	-	-	-	-	-	-	-	-	-	-	-
	AZ	PLG	AZ	Strike	Dip	Slip	Strike	Dip	Slip	-			
KOERI	-	-	-	-	-	-	-	-	-	-	-	-	-
GCMT	-	-	-	-	-	-	320	66	-174	228	85	24	2
RCMT	15	275	67	46	16	181	318	67	-179	228	89	-23	2
USGS	4	272	77	22	11	181	227	85	-11	318	79	-174	1

[^1]Table 1 (continued)

Agency	Date	Time (GMT)	Epicenter Latitude	Epicenter Longitude	Depth (km)	M_{w}	M_{b}	M_{s}	M_{L}	M_{0} (dyne.cm)
	$08 / 03 / 10$	$07: 47: 37$	38.7355	40.009	5.0	-	-	-	5.6	-
KOERI	$08 / 03 / 10$	$07: 47: 38$	38.7805	40.066	5.0	-	-	-	5.5	-
GCMT	$08 / 03 / 10$	$07: 47: 44$	38.81	39.96	15.2	5.6	5.5	5.5	-	$2.78 \mathrm{E}+24$
RCMT	$08 / 03 / 10$	$07: 47: 44$	38.77	40	17.0	5.6	-	-	-	$3.00 \mathrm{E}+24$
USGS	$08 / 03 / 10$	$02: 32: 30$	-	-	-	-	-	-	-	-

Agency	$\begin{gathered} \text { T- } \\ \text { axes } \\ \text { PLG } \end{gathered}$	$\begin{gathered} \text { T- } \\ \text { axes } \\ \text { AZ } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}- \\ \text { axes } \\ \text { PLG } \end{gathered}$	$\begin{gathered} \mathrm{N}- \\ \text { axes } \\ \mathrm{AZ} \end{gathered}$	$\begin{gathered} \text { P- } \\ \text { axes } \\ \text { PLG } \end{gathered}$	$\begin{gathered} \mathrm{P}- \\ \text { axes } \\ \text { AZ } \end{gathered}$	$\begin{gathered} \text { 1st } \\ \text { Plane } \\ \text { Strike } \end{gathered}$	$\begin{gathered} \text { 1st } \\ \text { Plane } \\ \text { Dip } \\ \hline \end{gathered}$	$\begin{gathered} \text { 1st } \\ \text { Plane } \\ \text { Slip } \\ \hline \end{gathered}$	2nd Plane Strike	2nd Plane Dip	$\begin{gathered} \text { 2nd } \\ \text { Plane } \\ \text { Slip } \\ \hline \end{gathered}$	Correct Plane
DEMA	-	-	-	-	-	-	-	-	-	-	-	-	-
KOERI	-	-	-	-	-	-	-	-	-	-	-	-	-
GCMT	-	-	-	-	-	-	322	81	-171	230	81	-9	2
RCMT	1	276	70	7	20	185	322	75	-166	229	76	-15	2
USGS	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 1 (continued)							
Agency	Date	Time (GMT)	Epicenter Latitude	Epicenter Longitude	Depth (km)	M_{L}	
DEMA	$08 / 03 / 10$	$03: 20: 22$	38.7948	40.0705	5.0	4.4	
KOERI	$08 / 03 / 10$	$03: 20: 22$	38.8698	40.2325	5.0	4.1	

Agency	Date	Time (GMT)	Epicenter Latitude	Epicenter Longitude	Depth (km)	M_{L}
DEMA	$08 / 03 / 10$	$08: 11: 20$	38.7412	40.0138	10.0	4.2
KOERI	$08 / 03 / 10$	$08: 11: 20$	38.7357	40.076	5.1	4.3

Agency	Date	Time $($ GMT)	Epicenter Latitude	Epicenter Longitude	Depth (km)	M_{L}
DEMA	$08 / 03 / 10$	$09: 00: 46$	38.7468	40.006	4.1	4.8
KOERI	$08 / 03 / 10$	$09: 00: 46$	38.761	40.0615	5.0	4.8

Agency	Date	Time $($ GMT $)$	Epicenter Latitude	Epicenter Longitude	Depth (km)	M_{L}
DEMA	$08 / 03 / 10$	$10: 14: 23$	38.7685	40.0772	7.7	5.0
KOERI	$08 / 03 / 10$	$10: 14: 23$	38.828	40.1187	5.0	5.1

Table 2. Important properties of the processed records from the main and aftershock events

Record Names	Instrument Type	Record Information	$\begin{aligned} & \mathrm{f}_{\mathrm{fc}^{-}} \\ & \mathrm{NS} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{hc}}- \\ & \mathrm{NS} \end{aligned}$	Usable periodNS	$\begin{aligned} & \mathrm{f}_{\mathrm{fc}^{-}} \\ & \mathrm{EW} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{hc}}- \\ & \mathrm{EW} \end{aligned}$	Usable periodEW	$\begin{aligned} & \mathrm{f}_{\mathrm{f}^{-}} \\ & \mathrm{UD} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{hc}}- \\ & \mathrm{UD} \end{aligned}$	Usable period- UD
20100308023229_0201	CMG-5TD		0.100	25	9.0	0.075	25	12.0	0.050	30	18.0
20100308023229_1201	CMG-5TD		0.050	40	18.0	0.075	40	12.0	0.050	40	18.0
20100308023229_1206	CMG-5TD		0.050	35	19.4	0.050	35	19.4	0.075	40	12.9
20100308023229_2101	CMG-5TD		0.100	30	9.0	0.050	30	18.0	0.100	30	9.0
20100308023229_2301	CMG-5TD		0.075	30	12.0	0.100	30	9.0	0.050	40	18.0
20100308023229_2303	SM-2		0.075	20	12.9	0.075	20	12.9	0.100	25	9.7
20100308023229_4701	CMG-5TD		0.100	35	9.0	0.100	35	9.0	0.075	30	12.0
20100308023229_7201	CMG-5TD		0.050	35	-	0.075	30	-	0.100	35	-
20100308032022_2303	SM-2	IDR	-	-	-	-	-	-	-	-	-
20100308074737_1201	CMG-5TD		0.100	30	9.0	0.075	30	12.0	0.075	40	12.0
20100308074737_1206	CMG-5TD		0.075	25	12.9	0.075	30	12.9	0.075	30	12.9
20100308074737_2301	CMG-5TD		0.075	30	12.0	0.075	30	12.0	0.100	30	9.0
20100308074737_2303	SM-2		0.100	25	9.7	0.100	20	9.7	0.100	35	9.7
20100308081120_2303	SM-2		0.100	20	9.7	0.150	20	6.5	0.200	30	4.9
20100308090046_1201	CMG-5TD		0.100	25	9.0	0.150	25	6.0	0.150	30	6.0
20100308090046_2303	SM-2		0.100	20	9.7	0.150	20	6.5	0.150	25	6.5
20100308101423_1201	CMG-5TD		0.050	40	18.0	0.100	40	9.0	0.150	40	6.0
20100308101423_1206	CMG-5TD		0.100	40	9.7	0.100	40	9.7	0.100	40	9.7
20100308101423_2303	SM-2		0.150	15	6.5	0.150	20	6.5	0.200	25	4.9
20100308XXXXXX_2303	SM-2	IDR	-	-	-	-	-	-	-	-	-

[^2]Table 2 (continued)

Record Names	Processed PGA_NS $\left({\left.\mathrm{cm} / \mathrm{s}^{2}\right)}^{2}\right.$	Processed PGA_EW $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	Processed PGA_UD $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	Processed PGV_NS $(\mathrm{cm} / \mathrm{s})$	Processed PGV_EW $(\mathrm{cm} / \mathrm{s})$	Processed PGV_UD $(\mathrm{cm} / \mathrm{s})$
20100308023229_0201	2.43	2.23	1.65	0.95	0.75	0.38
20100308023229_1201	55.43	34.27	25.50	5.10	3.78	1.74
20100308023229_1206	11.59	17.84	8.95	1.96	1.23	0.99
20100308023229_2101	3.44	5.10	2.60	0.52	0.68	0.35
20100308023229_2301	5.56	4.76	3.85	1.01	0.71	0.48
20100308023229_2303	62.14	66.59	30.04	7.30	5.99	3.24
20100308023229_4701	2.56	2.48	1.68	0.35	0.50	0.18
20100308023229_7201	7.61	5.42	2.52	1.27	1.09	0.27
20100308032022_2303	-	-	-	-	-	-
20100308074737_1201	14.54	10.21	7.07	1.10	0.83	0.55
20100308074737_1206	2.81	3.85	1.54	0.31	0.34	0.17
20100308074737_2301	3.54	4.22	3.33	0.60	0.50	0.45
20100308074737_2303	76.26	47.79	55.01	10.37	3.85	4.38
20100308081120_2303	7.78	6.86	4.98	0.56	0.58	0.36
20100308090046_1201	2.72	3.01	2.43	0.17	0.14	0.12
20100308090046_2303	15.50	12.95	9.18	1.68	0.95	0.78
20100308101423_1201	8.67	8.12	5.31	0.44	0.47	0.24
20100308101423_1206	2.25	2.21	1.48	0.17	0.17	0.08
20100308101423_2303	16.42	13.42	11.10	1.38	0.96	1.00
20100308XXXXXX_2303	-	-	-	-	-	-

[^3]PGV: Peak ground velocity

Table 2 (continued)
$\left.\begin{array}{cccccccc}\hline \text { Record Names } & \begin{array}{c}\text { Station } \\ \text { Code }\end{array} & \begin{array}{c}\text { Station } \\ \text { Latitude }\end{array} & \begin{array}{c}\text { Station } \\ \text { Longitude }\end{array} & \text { V }_{\text {S30 }} & \begin{array}{c}\mathrm{R}_{\text {epi }} \\ \text { DEMA } \\ (\mathrm{km})\end{array} & \begin{array}{c}\mathrm{R}_{\text {hyp }} \\ \text { DEMA } \\ (\mathrm{km})\end{array} & \begin{array}{c}\mathrm{R}_{\text {epi }} \\ \text { KOERI } \\ (\mathrm{km})\end{array} \\ \hline \hline \text { 20100308023229_0201 } & 0201 & 37.76121 & 38.26742 & 391 & 190.9 & 190.9 & 197.9 \\ \text { 20100308023229_1201 } & 1201 & 38.89708 & 40.5032 & 529 & 43.3 & 43.6 & 36.4 \\ \text { 20100308023229_1206 } & 1206 & 39.29345 & 41.00883 & 356 & 102.4 & 102.6 & 95.4 \\ \text { KOERI } \\ \text { (km) }\end{array}\right]$
$\mathrm{V}_{\mathrm{s} 3}:$ The mean S-wave velocity of the top 30 m of the soil profile
$\mathrm{R}_{\text {ein }}$:ppicentral distance
$\mathrm{R}_{\text {hyp }}$: Hypocentral distance

Record Names	Station Code	$\mathrm{R}_{\text {epi }}$ GCMT (km)	$\begin{gathered} \mathrm{R}_{\text {hyp }} \\ \mathrm{GCMT} \\ (\mathrm{~km}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{JB}} \\ \mathrm{GCMT} \\ (\mathrm{~km}) \\ \hline \hline \end{gathered}$	$\underset{(\mathrm{km})}{\mathrm{R}_{\mathrm{rup}}}$ (km)	$\mathrm{R}_{\mathrm{epi}}$ RCMT (km)	$\begin{gathered} \mathrm{R}_{\mathrm{hyp}} \\ \mathrm{RCMT} \\ (\mathrm{~km}) \end{gathered}$	R_{JB} RCMT (km)	$\mathrm{R}_{\text {rup }}$ RCMT (km)	$\mathrm{R}_{\text {epi }}$ USGS (km)	$\begin{gathered} \mathrm{R}_{\mathrm{hyp}} \\ \text { USGS } \\ (\mathrm{km}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{IB}} \\ \text { USGS } \\ (\mathrm{km}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\text {rup }} \\ \mathrm{USGS} \\ (\mathrm{~km}) \end{gathered}$
20100308023229_0201	0201	197.9	198.5	190.7	191.0	200.8	201.4	193.6	193.9	197.9	199.0	191.6	192.4
20100308023229_1201	1201	41.9	44.7	36.3	38.0	44.0	46.5	39.4	40.8	41.8	46.7	36.8	40.5
20100308023229_1206	1206	96.5	97.8	89.4	90.1	95.2	96.4	88.2	88.9	96.5	98.7	90.3	91.8
20100308023229_2101	2101	107.6	108.8	103.8	104.4	114.5	115.5	110.9	111.4	107.4	109.4	103.9	105.3
20100308023229_2301	2301	75.9	77.5	69.1	70.3	76.7	78.1	69.7	70.6	76.0	78.8	70.1	72.4
20100308023229_2303	2303	22.9	27.7	16.8	20.2	28.8	32.5	23.6	25.9	22.7	30.9	17.3	24.2
20100308023229_4701	4701	184.2	184.8	181.5	181.9	191.0	191.6	188.6	188.9	183.9	185.1	181.4	182.2
20100308023229_7201	7201	150.0	150.8	149.5	149.9	156.2	156.9	156.1	156.4	149.7	151.2	149.3	150.3
20100308032022_2303	2303	-	-	-	-	-	-	-	-	-	-	-	-
20100308074737_1201	1201	48.1	50.5	44.6	46.3	45.9	49.0	42.2	44.5	-	-	-	-
20100308074737_1206	1206	105.4	106.5	101.8	102.5	104.9	106.3	101.2	102.2	-	-	-	-
20100308074737_2301	2301	68.5	70.1	65.0	66.5	71.1	73.1	67.5	69.7	-	-	-	-
20100308074737_2303	2303	12.9	19.9	10.1	15.8	10.1	19.8	6.4	15.5	-	-	-	-
20100308081120_2303	2303	-	-	-	-	-	-	-	-	-	-	-	-
20100308090046_1201	1201	-	-	-	-	-	-	-	-	-	-	-	-
20100308090046_2303	2303	-	-	-	-	-	-	-	-	-	-	-	-
20100308101423_1201	1201	-	-	-	-	-	-	-	-	-	-	-	-
20100308101423_1206	1206	-	-	-	-	-	-	-	-	-	-	-	-
20100308101423_2303	2303	-	-	-	-	-	-	-	-	-	-	-	-
20100308XXXXXX_2303	2303	-	-	-	-	-	-	-	-	-	-	-	-

[^4]

Figure 1. Epicenter of the mainshock and national strong-motion stations that recorded the mainshock (from Google Earth)

Ground Motions of the 08/03/2010 02:32:29 Elazığ-Kovancılar, Earthquake

Figure 2. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Elazığ-Palu (Record Name: 20100308023229 2303, Station Code: 2303). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 3. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Elazığ-Palu (Record Name: 20100308023229_2303, Station Code: 2303).

Figure 4. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Elazığ-Merkez (Record Name: 20100308023229_2301, Station
Code: 2301). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 5. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Elazığ-Merkez (Record Name: 20100308023229_2301, Station Code: 2301).

Figure 6. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Adıyaman-Merkez (Record Name: 20100308023229_0201, Station Code: 0201). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 7. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Adıyaman-Merkez (Record Name: 20100308023229_0201, Station Code: 0201).

Figure 8. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Bingöl-Merkez (Record Name: 20100308023229_1201, Station Code: 1201). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 9. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Bingöl-Merkez (Record Name: 20100308023229_1201, Station Code: 1201).

Figure 10. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Bingöl-Karlıova (Record Name: 20100308023229_1206, Station Code: 1206). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 11. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Bingöl-Karlıova (Record Name:

20100308023229_1206, Station Code: 1206).

Figure 12. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Diyarbakır-Merkez (Record Name: 20100308023229_2101, Station Code: 2101). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 13. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Diyarbakır-Merkez (Record Name: 20100308023229_2101, Station Code: 2101).

Figure 14. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Mardin-Merkez (Record Name: 20100308023229_4701, Station Code: 4701). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 15. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Mardin-Merkez (Record Name:

20100308023229_4701, Station Code: 4701).

Figure 16. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Batman-Merkez (Record Name: 20100308023229_7201, Station Code: 7201). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 17. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Batman-Merkez (Record Name: 20100308023229_7201, Station Code: 7201).

Ground Motions of the 08/03/2010 07:47:37 Elazığ-Palu, Earthquake

Figure 18. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Bingöl-Merkez (Record Name: 20100308074737_1201, Station
Code: 1201). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 19. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Bingöl-Merkez (Record Name:

20100308074737_1201, Station Code: 1201).

Figure 20. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Bingöl-Karlıova (Record Name: 20100308074737_1206, Station Code: 1206). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 21. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Bingöl-Karlova (Record Name:

20100308074737_1206, Station Code: 1206).

Figure 22. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Elazığ-Merkez (Record Name: 20100308074737_2301, Station Code: 2301). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 23. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Elazığ-Merkez (Record Name: 20100308074737_2301, Station Code: 2301).

Figure 24. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Elazığ-Palu (Record Name: 20100308074737_2303, Station Code: 2303). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 25. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Elazığ-Palu (Record Name:

20100308074737_2303, Station Code: 2303).

Ground Motions of the 08/03/2010 08:11:20 Elazığg-Palu, Earthquake

Figure 26. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Elazığ-Palu (Record Name: 20100308081120_2303, Station Code: 2303). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 27. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Elazığ-Palu (Record Name: 20100308081120_2303, Station Code: 2303).

Ground Motions of the 08/03/2010 09:00:46 Elazığ-Kovancılar, Earthquake

Figure 28. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Bingöl-Merkez (Record Name: 20100308090046_1201, Station
Code: 1201). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 29. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Bingöl-Merkez (Record Name:

20100308090046_1201, Station Code: 1201).

Figure 30. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Elazığ-Palu (Record Name: 20100308090046_2303, Station Code: 2303). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 31. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Elazığ-Palu (Record Name: 20100308090046_2303, Station Code: 2303).

Ground Motions of the 08/03/2010 10:14:23 Elazığ-Kovancılar, Earthquake

Figure 32. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Bingöl-Merkez (Record Name: 20100308101423_1201, Station
Code: 1201). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 33. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Bingöl-Merkez (Record Name:

20100308101423_1201, Station Code: 1201).

Figure 34. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Bingöl-Karlıva (Record Name: 20100308101423_1206, Station Code: 1206). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 35. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Bingöl-Karlova (Record Name: 20100308101423_1206, Station Code: 1206).

Figure 36. Acceleration (top row), velocity (middle row) and displacement (bottom row) time series of the processed ground motions recorded at Elazığ-Palu (Record Name: 20100308101423_2303, Station Code: 2303). The waveforms are band-pass filtered by acausal 4-pole/4-pole Butterworth filter. Zero pads due to acausal filter transients are not shown for illustrative purposes.

Figure 37. Fourier acceleration spectra (top row) and 5-percent damped pseudo-spectral accelerations (bottom row) of the processed ground motions recorded at Elazığ-Palu (Record Name: 20100308101423_2303, Station Code: 2303).

Ground Motions with Insufficient Digitizer Resolution (IDR) Problem

Figure 37. Unprocessed acceleration time series of the ground motions recorded at Elazığ-Palu (Record Name: 20100308032022_2303, Station Code: 2303).

Figure 38. Unprocessed acceleration time series of the ground motions recorded at Elazığ-Palu (Record Name: 20100308XXXXXX_2303, Station Code: 2303).

[^0]: ${ }^{1}$ Scientific and Technological Research Council of Turkey
 ${ }^{2}$ This project is jointly launched by the Earthquake Department of the Disaster and Emergency Management State Agency and the Earthquake Engineering Research Center of Middle East Technical University.

[^1]: ${ }^{3}$ Earthquake Department of the Disaster and Emergency Management State Agency (abbreviated as State Earthquake Department in this document).
 ${ }^{4}$ Kandilli Observatory and Earthquake Research Institute
 ${ }_{5}^{5}$ Kandilli Observatory and Eentroid Moment Tensor
 ${ }^{6}$ European Mediterranean Regional Centroid Moment Tensors Database
 ${ }^{7}$ United States Geological Survey

[^2]: ${ }_{\mathrm{f}}^{\mathrm{f} c}$: Low-cut filter frequency
 $\mathrm{f}_{\text {hc }}$: High-cut filter frequency
 IDR: Insufficient digitizer resolution

[^3]: PGA: Peak ground acceleration

[^4]: R_{JB} : Joyner-Boore distance (the closest distance from site to the vertical projection of the rupture plane)
 $\mathrm{R}_{\text {rup }}$: Rupture distance (the closest distance from site to the rupture plane)

